Binding mode prediction and inhibitor design of anti-influenza virus diketo acids targeting metalloenzyme RNA polymerase by molecular docking

نویسندگان

  • Yoshinobu Ishikawa
  • Satoshi Fujii
چکیده

Influenza is a yearly seasonal threat and major cause of mortality, particularly in children and the elderly. Although neuraminidase inhibitors and M2 protein blockers are used for medication, drug resistance has gradually emerged. Thus, the development of effective anti-influenza drugs targeting different constituent proteins of the virus is urgently desired. In this light, we carried out molecular docking to predict the binding modes of anti-influenza diketo acid inhibitors in the active site of the PAN subunit of the metalloenzyme RNA polymerase of influenza virus. The calculations suggested that the dianionic forms of the diketo acids should chelate the dinuclear manganese center as dinucleating ligands and sequester it. They also indicated that the diketo acid derivatives with larger hydrophobic substituents should block a hydrophobic cavity in the active site more tightly. These assumptions could adequately explain the enzyme inhibition by these compounds. Furthermore, we designed potential inhibitors by lead optimization of a diketo acid inhibitor from the thermodynamic points of view. Molecular docking results showed that the newly designed diketo acid derivatives might inhibit the metalloenzyme RNA polymerase more strongly than the lead inhibitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of temperature on the binding affinity of Remdesivir and RdRp enzyme of SARS-COV-2 virus using steered molecular dynamics simulation

The fatal SARS-COV-2 virus appeared in China at the end of 2019 for the first time. This virus has similar sequence with SARS-COV in 2002, but its infection is very high rate. On the other hand, SARS-COV-2 is a RNA virus and requires RNA-dependent RNA polymerase (RdRp) to transcribe its viral genome. Due to the availability of the active site of this enzyme, an effective treatment is targeting ...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase Œ PLOS Currents Influenza

The influenza A RNA polymerase possesses endonuclease activity to digest the host mRNA. Thus this endonuclease domain can be a target of anti-influenza A virus drug. Here we report that green tea catechins inhibit this viral endonuclease activity and that their galloyl group is important for their function. Docking simulations revealed that catechins with galloyl group fit well into the active ...

متن کامل

Structural Analysis of Specific Metal Chelating Inhibitor Binding to the Endonuclease Domain of Influenza pH1N1 (2009) Polymerase

It is generally recognised that novel antiviral drugs, less prone to resistance, would be a desirable alternative to current drug options in order to be able to treat potentially serious influenza infections. The viral polymerase, which performs transcription and replication of the RNA genome, is an attractive target for antiviral drugs since potent polymerase inhibitors could directly stop vir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011